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Renormalization and symmetry :

a review for non-specialists
(1971)

1 Introduction

I suppose that as good a way as any of explaining the contents of
this lecture is to explain the title. By ‘renormalization’ I mean the removal
of infinities for Feynman amplitudes, in perturbation theory, for Lagran-
gian field theories with polynomial interactions. In particular non-per-
turbative renormalization (the work of Jaffe, Glimm, etc.) is outside the
scope of this lecture, as are the properties of non-polynomial interactions
(the work of Efimov, Salam, Lehmann, etc.). By ‘renormalization and
symmetry’ I mean that we will be concerned not only with the renormaliza-
tion of scattering amplitudes, but also with the renormalization of the
matrix elements of conserved and partially conserved currents. In par-
ticular, we will discuss some fairly recent results of Symanzik, Benjamin
Lee, Preparata, Weisberger, and others. By ‘a review for non-specialists’
I mean that I hope that this talk will be intelligible to people who can do
nothing more complicated than remove the divergences from the self-
energy of the electron.

Since renormalization theory has a well-deserved reputation for com-
plexity, it is obvious that I will be able to do all this in a single lecture only
by cheating. To be precise, I will explain a very powerful theorem due to
Klaus Hepp, but not prove it (this is the cheat); then I will show how a wide
variety of results can be obtained from this master theorem by elementary
methods.*

2 Bogoliubov's method and Hepp’s theorem

For simplicity, we will restrict ourselves to field theories involving
spin-zero and spin-one-half ficlds only, which we will call Bose and Fermi
lields, respectively. We will write the Lagrangian for such a theory in the
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100 Renormalization and symmetry : a review for non-specialists

form
y=$0+z ‘gi’ (1)

where &, is a sum of free Lagrangians of standard form, one for each field,
and each Z, is a monomial in the fields and their derivatives. For future
use, it will be convenient to establish some notation, and denote by f; the
number of Fermi fields in .#;, by b; the number of Bose fields, and by d;
the number of derivatives. Thus, for example, the ps-ps meson—nucleon
interaction

glp}’s‘/’d—’,
has f=2,b=1, and d =0, while the ps-pv interaction

Svaysh oo,
has f=2,b=1,and d=1.

If we attempt to calculate scattering amplitudes with such a Lagrangian,
following the conventional Feynman rules, we soon encounter divergent
diagrams, that is to say, infinite Feynman integrals. I will assume that we
have cut off the theory in some way (say, by modifying the propagators)
so that instead of divergent amplitudes we have cutoff-dependent ones.
The renormalization procedure of Bogoliubov? consists of adding to the
Lagrangian extra terms, the so-called renormalization counter-terms,
whose function is to cancel the cutoff-dependence of the amplitude. First
I will explain how these extra terms are constructed; later I will explain
their physical meaning.

To explain the construction, three definitions are needed:

(I) One-particle-irreducible diagrams. A Feynman diagram is said to
be one-particle-irreducible (abbreviated IPI) if it is connected and cannot
be disconnected by cutting any one internal line. Fig. 1 shows three Feyn-

Fig. 1
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man diagrams in ¢* theory. The first two are 1P1; the third is not. (If the
horizontal line is cut, the diagram falls into two pieces.)

(2) Taylor expansions about the point zero. A Feynman amplitude with
n external lines is a function of n— 1 independent four-momenta. Further-
more, if there are no massless particles in the theory (as we shall assume
from now on) it is an analytic function of these momenta in some neigh-
bourhood of the point zero, the point where all external momenta vanish.
Thus, it may be expanded in a Taylor series in these variables. Forexample,
the third-order vertex diagram of ps-ps meson—nucleon theory, shown in
Fig. 2, has an expansion of the form

ays
+ by sy p*+cysypt
+dysp*+eysp+ fyspp
+ .« e . ,

where a, b, ¢, etc. are constants. The term on the first line is called a term
of zeroth order, those on the second line terms of first order, those on the
third line terms of second order, etc.

Fig. 2
- - l - -
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(3) Superficial degree of divergence. A Feynman amplitude is, in general,
a multiple integral. The superficial degree of divergence of such an integral
is the difference between the number of momenta in the numerator of the
integral (arising from loop integration variables and from explicit momen-
la at vertices due to derivative interactions) and the number of momenta
in the denominator (arising from propagators). Fig. 3 shows three
Feynman diagrams from ¢* theory, with their superficial degrees of
divergences (denoted by D). The contribution from numerator and
denominator are separately displayed. If D=0, we say the diagram is
superficially logarithmically divergent, if D=1, that it is superficially
linearly divergent, etc. If D is less than zero, we say it is superficially
convergent.

Fig. 3(c) demonstrates the reason for the pejorative adjective ‘super-
ficial. Although the diagram is superficially convergent, it is in fact
divergent; the integration along the lower loopis logarithmically divergent
no matter what happens in the rest of the digram,
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Fig. 3

(a) >©< D= 4-4= 0
(b)) —&—>— D:=8-6:=2
(c) D= 8-10= -2

It will be convenient later to have a general expression for the super-
ficial degree of divergence of a connected Feynman diagram. For such a
diagram let

B be the number of external boson lines,

IB be the number of internal boson lines,

F be the number of external fermion lines,

IF be the number of internal fermion lines, and

n; be the number of vertices of the ith type, i.e. those that come
from the ith term in the Lagrangian (1).

There is an elementary relation between these numbers. Since a vertex
of the ith type has b; boson line ends attached to it, and since every internal
boson line has two ends attached to vertices and every external boson
line has one, we can readily deduce that

B+2(IB)=Z n,-b,-,

‘the law of conservation of boson ends’. By the same reasoning, we can
deduce ‘the law of conservation of fermion ends’,

F+2IF)=) n;f;.
It is also elementary to compute the superficial degree of divergence:

The five terms in this formula have the following origins. (1) Every deriva-
tive in an interaction puts a momentum in the numerator of the Feynman
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integral. (2) Every internal boson line puts four integration momenta in the
numerator and two propagator momenta in the denominator. (3) Every
internal fermion line puts four integration momenta in the numerator
and one in the denominator. (4) Every vertex has a four-dimensional delta-
function attached to it, which, upon integration, cancels four integration
momenta, (5) except for one delta-function that is left over to give overall
four-momentum conservation.
Putting all of this together, we find that

D= —B—3$F+4+Y nd, @)
where d;, ‘the index of divergence of £, is given by

S;=b;+3fi+d—4. (3)
It is worth remarking that, for the cases we are considering,

5,=dlm 31—4, (4)

where dim ¥; is the dimension of %,;, in the usual sense of dimensional
analysis, in units of mass. (This is, however, special to the theories we are
considering; eq. (4) is not true, for example, for the interactions of a vector
meson coupled to a non-conserved current.)

This completes our three definitions (plus one long digression). We are
now in a position to state the renormalization prescription of Bogoliubov.?
Asadvertised, this is an iterative procedure; as we calculate in perturbation
theory, to each order we change the Lagrangian, adding to it extra terms.
The procedure is as follows:

(1) Calculate in perturbation theory until you encounter an IPI diagram
whose superficial degree of divergence, D, is greater than or equal to zero.

(2) Add to the Lagrangian extra terms (the counterterms) chosen to
precisely cancel, to this order, all terms in the Taylor expansion of this
diagram of order D or less.*

As an example of this procedure, let us consider A¢* theory, for which the
Lagrangian (1) is

1, o 1 1o
L =5 0,900~ 5 w6 — 1 ¢ )

In order A2, we encounter the divergent diagrams 3(a) and 3(b). For the
first of these, D=0, for the second D=2. Thus we change the Lagrangian

* Please note that it follows from this and Egs. (2) and (3) that the counterterms
induced have index of divergence. o, less than or equal to the sum of the indices
of divergence of the mternctions oceurring in the diagram. This observation has
been stuck in a lootnote because 1t v not important now, but 1t will be useful
later.
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(5) by adding to it extra terms

A 1 |
[N ﬁ qb4+5 B,0,¢00"¢p — ) C,d2. (6)

(The subscript 2 is to remind you that these terms are of second order in 4;
they are also cutoff-dependent, but that is not important at the moment).
The A, term is chosen to cancel the zeroth-order term in the Taylor
expansion of 3(a); the B, and C, terms to cancel the zeroth and second
order terms in the Taylor expansion of 3(b). (There is no need for a first-
order counterterm because Lorentz-invariance forbids a first-order term
in the Taylor expansion.)
(3) Continue computing, now using the corrected Lagrangian.

Theorem (Hepp).> This procedure eliminates all divergences. That is
to say, the resultant perturbation expansion is independent of the cutoff in
the limit of infinite cutoff.

For the moment, I would like you to think of this purely as a mathe-
matical theorem about Feynman expansions; we will try to understand its
physical significance shortly. However, there is one point I would like to
make now — we can already begin to see why it is the superficial degree of
divergence, rather than the true degree of divergence, that is important.
Remember the order A* diagram 3(c), which has D= —2. By our prescrip-
tion, even though this diagram is in fact divergent, it does not induce a
counterterm. We can now see the reason for this: there is another diagram
of order A%, shown in Fig. 4, where the heavy dot is the 4, term in eq. (6),
the counterterm that was added to the Lagrangian in order A2. This dia-
gram automatically cancels the divergence of Fig. 3(c). Speaking very
roughly, we only need new counterterms at a given order of perturbation
theory to take care of new divergences; old divergences, divergences
caused by lower-order diagrams hiding inside higher-order ones, as 3(a)
is hiding inside 3(c), are taken care of by old counterterms.

Fig. 4

3 Renormalizable and non-renormalizable interactions
Let us look a little more closely at the theory defined by eq. (5).
We have already classified the counterterms that arise in order 42; what
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happens in an arbitrary order of perturbation theory? Equations (2) and
(3) give us the answer; for the special case of a ¢* interaction, eq. (3)
becomes

0=4+4+0+4+0-4=0,
and eq. (4) becomes

D=4-B.
Thus the only superficially divergent diagrams are those with B equal to
two or four (diagrams with odd numbers of external lines vanish because
of the symmetry of the Lagrangian under ¢— — ¢), and their superficial

degrees of divergence are the same in a general order as in second order.
The only effect of renormalization, to any order, is to change (5) into

1 1 i, A ., B 1
,Gf_—-i(au@z—iu"qﬁzwatb—atb +5 0,90~ 5C¢% (D

where the constants A4, B, and C are power series in 4, with coefficients that
are, in general, cutoff-dependent. We can now see the physical meaning of
the renormalization procedure; for if we define

¢u"_"(1 +B)&¢3 (8a)
pe=(+C)1+B)7", (8b)
lo=(A+AY1+B) 3, (8¢)

then we may rewrite the Lagrangian (7) as
1 1 A
£ =3 Cup)@$)— 5 uihi— 35 bt

This is of the same form as our starting Lagrangian (5), except that the coef-
ficients have been changed. The field ¢, is called the unrenormalized field;
it obeys canonical commutation relations, but has cutoff-dependent
matrix elements (because of the cutoff-dependent quantity B in eq. (8a)).
The quantities u, and 4, are called the bare mass and bare coupling
constants. Thus, for this theory the content of Hepp’s theorem is that if we
choose the bare mass and coupling constants in an appropriate cutoff-
dependent fashion, and rescale the fields in an appropriate cutoff-depen-
dent way, all the divergences disappear, order by order, in perturbation
theory. A Lagrangian that has this property is said to be renormalizable.

The field ¢ and the quantities u and A are not the renormalized field,
mass, and coupling constants as usually defined; this is because they are
defined in terms of Green's functions at the point zero, rather than at some
astutely chosen mass-shell point. However, they are cutoff-independent
parameters that characterize the theory; the usual parameters can be
computed in terms of them to any order of perturbation theory, and, if
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one wishes, these expressions can be inverted in the standard way to
obtain a perturbation theory in terms of the usual parameters. For our
purposes they are more convenient than the usual parameters because it
is easier to do power series expansions about the point zero than about
mass-shell points, where one has to worry about possible singularities of
Feynman integrals. To distinguish them from the usual parameters we
will refer to u and A as the intermediate mass and coupling constants;
likewise, we will refer to the Green’s functions associated with the field
¢ as intermediate Green'’s functions,

Not all Lagrangians are renormalizable. For example, if we had added a
¢° interaction to our starting Lagrangian, this would have é equal to one,
and the renormalization procedure would inexorably add to the Lagran-
gian, as we computed higher and higher orders of perturbation theory,
higher and higher order monomials in the field and its derivatives. Once
such expressions appear in the counterterms, there is no physical reason
to exclude them from the starting Lagrangian. (After all, it was only
mathematical convenience that made us choose the point zero for our
renormalization prescription; if we had chosen a different point (or even a
separate point for every Green’s function, or different points in different
orders of perturbation theory) we would have obtained different values
for the coefficients of the counterterms.) Thus we would be led to a theory
with an infinite number of parameters. Such theories are called non-
renormalizable.

4 Symmetry and symmetry-breaking : Symanzik’s rule.

We are now ready to begin pulling interesting results out of Hepp’s
theorem. I would like to begin by taking the observation made in a footnote
to Sect. 2 and raising it to the dignified status of a

Lemma. The counterterms induced by a given Feynman diagram have
index of divergence, 4, less than or equal to the sum of the indices of
divergence of all the interactions in the diagram.

I would also like to adopt a somewhat more stringent definition of
renormalizability than usual: I will call a Lagrangian renormalizable only
if all the counterterms induced by the renormalization procedure can be
absorbed into a redefinition of the parameters in the Lagrangian. Thus,
by this strict test, the theory of a single nucleon field interacting with a
single pseudoscalar meson field through Yukawa coupling, ¥ys¥ ¢, is not
renormalizable, because renormalization induces a ¢* counterterm, not
present in the original Lagrangian. However, the same theory, with a ¢*
interaction in the original Lagrangian, is renormalizable, because now all
the counterterms are of the same form as terms originally present.
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With this definition, we can now state our:

First result. Given a set of spin-zero and spin-one-half fields, the most
general Lagrangian constructed from this set containing all terms with
less than or equal to zero (equivalently, with dimension less than or equal
to four) is renormalizable.

This is a trivial consequence of the Lemma.

Second result. If we restrict the Lagrangians defined in the first result
to only contain parity-conserving terms, they are still renormalizable. Like-
wise, if we restrict them to preserve some internal symmetry, such as
isotopic spin, they are still renormalizable.

This is also trivial. Unless we have been so stupid as to introduce parity
violation into our cutoff procedure, Feynman diagrams computed from a
parity-conserving Lagrangian will be parity-conserving. Thus, they will
have no parity-violating terms in their Taylor expansions about the point
zero, and hence no parity-violating counterterms will be induced by the
renormalization procedure. Ditto for internal symmetries. (In fact, ditto
for chiral symmetries, such as those of the s-model, although here one
must be more clever than usual to construct a cutoff procedure that does
not break the symmetry.)®

Third result. (Symanzik’s rule for symmetry-breaking):® If we generalize
the preceding set of Lagrangians to include symmetry-breaking terms,
but only with dimensions less than or equal to n, where n is either 3,2, or 1,
they are still renormalizable.

Although this is our first ‘new’ (1970) result, it is also trivial.” The
symmetric terms in the Lagrangian have d<0; the symmetry-breaking
terms have d<n—4<0. A symmetry-breaking counterterm can arise
only from a diagram that involves at least one symmetry-breaking inter-
action. By the Lemma, this must also have d<n—4.

Thus, for example, if, in the standard isospin-symmetric theory of pions
and nucleons, we choose to break isospin only by giving the charged and
neutral pions different masses, then renormalization will not force us to
change our intention and also introduce symmetry-breaking Yukawa
couplings. Remember, though, that we are speaking here of the inter-
mediate coupling constants. The physical renormalized coupling constants
do display the effects of symmetry-breaking; the new terms we have added
to the Lagrangian do affect the three-particle Green’s functions. It is just
that these effects are not divergent, and hence do not require counter-
terms. If we look at the equations that define the bare masses and coupling
constants, discussed in the preceding section, we see that another way of
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stating this result is to say that the constraint that the internal symmetry
be broken only by the bare masses, while the bare coupling constants
remain symmetric, does not introduce any divergences. (Unfortunately it
is the opposite case — equal bare masses but asymmetric coupling (to
electromagnetism) — that is of greatest physical interest, for this is the
problem of the electromagnetic mass differences within isotopic multi-
plets. Alas, we have to go, one way or another, beyond conventional
renormalized field theory, to solve this problem.)

The most important special case of Symanzik’s rule is the renormaliza-
tion of the outstanding example of a Lagrangian field theory obeying
PCAC, the ¢ model. This can be characterized as the theory of the inter-
actions of pions, sigmas (scalar isoscalar mesons) and nucleons, such that
the chiral symmetry group SU, x SU, is broken only by terms of dimen-
sion one (i.e., linear in the o field). Symanzik’s rule then immediately says
that this model is renormalizable.’

5 Symmetry and symmetry-breaking: currents

Field theories with internal symmetries have the famous feature
of possessing conserved currents, and frequently the matrix elements of
these currents are objects of great physical interest (e.g. electromagnetic
form factors). These currents are typically bilinear forms in unrenormalized
fields and their derivatives. Thus, one would naively expect them to be
doubly divergent — divergent because the unrenormalized fields are them-
selves divergent, and divergent also because we are bringing two fields
together at the same space-time point. Thus the following result is as
surprising as it is beautiful:

Fourth result. In a renormalizable field theory with internal symmetry,
the matrix elements of the conserved currents associated with the sym-
metry are cutoff-independent in every order of perturbation theory.®

To prove this result we shall need two pieces of information. Firstly, we
need to know how to compute the Green’s functions for one current and
a string of fields in a Lagrangian way, so we can apply Hepp’s theorem,
which is about Lagrangians. Fortunately, there is a standard trick for
doing this: let j, be the current, and let .# (x) be an arbitrary c-number
function of space and time. Change the Lagrangian of the theory by adding
to it an extra term:

L - +5,(x)j" 9

Compute all Green’s functions to first order in the added term, and then
functionally differentiate with respect to #,. The result is the Green’s
function with a current inserted.
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Secondly, we need the Ward identities for conserved currents. I have
discussed these in some detail in my other lectures at this school. Here we
need the Ward identities only in the somewhat sketchy form depicted in
Fig. 5. The blob on the left is a Green’s function for one current and a
string of Bose and Fermi fields, represented by the solid lines, without and
with arrows. The current is represented by a wiggly line; it carries mo-
mentum k, and vector index u. The right-hand side of the Ward identity is
some linear combination of Green’s functions without a current, repre-
sented by the blob on the right.

Fig. 5
M
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A crucial property of this equation is that it involves the same number of
fields on the right as on the left, and is therefore true for any normalization
of the fields that respects the internal symmetry. In particular, it is true for
the intermediate fields we have been using, and therefore, for this choice of
fields, the right-hand side of the Ward identity is independent of the cutoff
in the limit of large cutoff. This is the essential fact we will use in the sequel.

Now let us begin counting divergences. Let us, in the manner of eq. (9),
add to the Lagrangian an extra term

L->L+I5 (Z aij'piyulllj'i'Z Bijliyhy v
1] 1
+3 Vi;9:0"@;+ D Siau¢i)’ (10)
i,j

where the as, fis, ys, and es are numerical coefficients, and the sums run
over all the Fermi (or Bose) fields in the theory.® The interactions that
give us the Green'’s functions for the conserved currents are certainly of this
form, with special choices for the numerical coefficients. However, for the
moment, let us consider a general interaction of the form (10), without
asking whether or not it is associated with a conserved current. Now let
us follow the renormalization procedure for this new interaction (but only
going to first order in.# ). Since (10) is the most general Lorentz-covariant
interaction linear in .#, and of dimension three or less, the counterterms
induced will also be of the form (10). That is to say, starting with any inter-
action of the form (10), we can obtain a cutoff-independent interaction,
(i.e. one that leads to cutoflndependent Gireen's functions; the actual
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numerical coefficients in the interaction will be, of course, cutoff-depen-
dent) order by order in renormalized perturbation theory, by appropri-
ately adjusting the numerical coeflicients.

We can choose a certain subset of these interactions — say, those that
are generated by starting with interactions (10) for which all but one of the
numerical coefficients vanishes — as a linearly independent set. Then any
interaction of the form (10) is a linear combination of these with some
coefficients. The value of these coefficients is completely determined by
certain terms in the Taylor expansions of certain Green’s functions about
the point zero. The relevant Green’s functions, and their expansions, are
shown in Fig. 6, where the latin letters label the fields. The one-to-one
correspondence between these coeflicients and the terms in (10) is evident.

Fig. 6
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If, for the particular case of the Green’s functions of a conserved current,
we can show that these expansion coefficients are cutoff-independent, we
will have shown that these Green’s functions are linear combinations of
cutoff-independent Green’s functions with cutoff-independent coef-
ficients, and we will have the desired result. But this is just where the Ward
identities come in, for they tell us that k* dotted into the expansions shown
in Fig. 6 must be cutoff-independent, and it is trivial to check that this is
enough to tell us that the coefficients themselves are cutoff-independent.

(Please note that if we had had to go to higher orders in the Taylor
expansion, the Ward identities would not have been sufficient. For
example, they tell us nothing about the coefficient of the following term
which can occur in the expansion of the second line of Fig. 6:

pk*—k,p-k,

because k* dotted into this expression vanishes. We need the divergence-

i
s3]
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counting of the renormalization procedure to tell us that all possible
divergences are controlled if we can control only a few terms in the
Taylor expansion. Only then can we use the Ward identities to control
those terms.)

This completes the proof of our fourth result.

It is now fairly trivial to get a generalization.

Fifth result. The matrix elements of internal symmetry currents are
cutoff-independent even if the symmetry is broken, provided: (1) it is
broken in the manner described in the third result, that is to say, by terms
of dimension three or less; and (2) the theory possesses no Bose fields with
the same internal-symmetry transformation properties as the symmetry-
breaking terms of dimension three. (This is a slight generalization of a
result of Preparata and Weisberger.!°

Here we proceed just as we did when establishing the third result. We
treat the symmetry-breaking as a perturbation, and ask if it can introduce
new divergences into current Green’s functions — that is to say, whether it
can induce new counterterms in the interaction (10). Since the symmetry-
breaking has é < — 1, and since (10) has dimension three or less, these new
counterterms, if they exist, must be of dimension two or less. Thus, they
must be proportional to the gradient of a Bose field. But such terms are
excluded by hypothesis (2) above; they have the wrong internal-symmetry
transformation properties.

Notes and references

1. Sometimes I will make further cheats. I will warn you about them in notes
like this.

2. N. N. Bogoliubov and D. V. Shirkov: Introduction to the Theory of Quantized

Fields (Interscience, 1959), especially Chapter IV and references contained

therein.

K. Hepp: Comm. Math. Phys. 1,95 (1965).

4. A cheat: we will treat this theorem as if it had been proved for general cutoff
procedures; in fact it has been proved only for a restricted class of cutoffs.

5. Cheating again! Here I am blatantly ignoring the fact that the 6-model displays
the Goldstone phenomenon, and that we are, therefore, not perturbing about
the solution with manifest symmetry, but the one with a Goldstone boson. This
cheat is not so bad, though. What we are really interested in is whether the
counterterms spoil the Ward identities of chiral symmetry; these are
independent of whether we are in the manifest-symmetry mode or in the
Goldstone mode. Sec B. W. Lee, Nucl. Phys. B9, 649 (1969).

6. K. Symanzik in Fundamental Interactions at High-Energies, ed. by A. Perlmutter
et af. (Gordon and Breach, 1970)

7. After it was done first by Symuansik.

8. Remember, we are diwusming theonies without vector mesons. The result is
not true if the theory contatms vectos mesons with the same quantum numbers
as the conserved currents, as does gquantum clectrodynamics.

(8
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9. As the y5 may indicate, these arguments work for chiral symmetries as well as
for internal symmetries in the more usual sense. This may disturb those of you
who know that the Ward identities for chiral theories sometimes contain
anomalies, but don’t worry — those with only one current have no anomalies,
and those are the only ones we are using.

10. G. Preparata and W. Weisberger: Phys. Rev. 175, 1973 (1968).



